Surds SS2 Mathematics Lesson Note

Download Lesson Note
Lesson Notes

Topic: Surds

RULES OF SURDS 

Surds are irrational numbers. They are the root of rational numbers whose value cannot be expressed as exact fractions. Examples of surds are: √2, √7, √12, √18, etc.

  1. √(a X b ) = √a X √ b
  2. √(a / b )  = √a  / √b
  3.  √(a + b ) ≠ √a +  √b
  4. √(a – b ) ≠ √a –  √b  

BASIC FORMS OF SURDS 

√a is said to be in its basic form if A does not have a factor that is a perfect square. E.g.  √6, √5, √3, √2 etc.  √18 is not in its basic form because it can be broken into √ (9×2) = 3√2. Hence 3√2 is now in its basic form. 

SIMILAR SURDS 

Surds are similar if their irrational part contains the same numerals e.g. 

  1. 3√n and 5√n
  2. 6√2 and 7√2 

Conjugate Surds  

Conjugate surds are two surds whose product result is a rational number. 

(i)The conjugate of √3 – √5 is √3 + √5 

The conjugate of -2√7 + √3 is 2√7 – √3 

In general, the conjugate of √x + √y is √x – √y 

The conjugate of √x – √y = √x + √y 

SIMPLIFICATION OF SURDS  

Surds can be simplified either in the basic form or as a single surd. 

Example 1

Simplify the following in its basic form (a) √45 (b) √98 

Solution  

(a) √45 = √ (9 x 5) = √9 x √5 = 3√5

(b) √98 = √ (49 x 2) = √49 x √2 = 7√2 

Example 2

Simplify the following as a single surd (a) 2√5 (b) 17√2

Solution 

(a) 2√5 = √4 x √5 = √ (4 x 5) = √20 

(b) 17√2 = √289 x √2 = √ (289 x 2) = √578 

ADDITION AND SUBTRACTION OF SURDS 

Surds in their basic forms which are similar can be added or subtracted. 

Examples

Evaluate the following 

(a)√32 + 3√8       (b) 7√3 – √75      (c) 3√48 – √75 + 2√12 

Solution

 (√32  + 3√8 

          = √ (16 x 2) + 3√ (4 x 2) 

          =4√2 + 6√2 

          = 10√2 

(b) 7√3 – √75 

= 7√3 – √ (25 x 3)

=7√3 – 5√3     =2√2 

(c) 3√48 – √75 + 2√12 

          = 3√ (16 x 3) – √ (25 x 3) + 2√ (4 x 

d) = 12√3 – 5√3 + 4√3 

          = 11√3 

MULTIPLICATION AND DIVISION OF SURDS 

Example: Evaluate the following: 

(a) √45 x √28    (b) √24 /√50 

Solution 

(a) √45 x √28 

= √ (9 x 5) x √ (4 x 7) 

= 3√5 x 2√7 

= 3 x 2 x √ (5 x 7)

= 6√35 

(b)√24 / √50 

          = √ (24 / 50) 

          = √ (12 / 25) 

          = √12 / √25

          = √ (4 x 3) / 5 

          = 2√3 / 5 

SURDS RATIONALISATION 

Rationalisation of surds means multiplying the numerator and denominator by the denominator or by the conjugate of the denominator. 

Example: Evaluate the following 

(a) 6/√3   (b)   3 ÷ √3 + √2 

Solution 

  1. a) 6/√3

=   6 x √3             

 √3 x √3

=    6√3

         3

= 2√3

 

(b) 3√3 + √2                                                                          

  = 3 (√3 – √2)

(√3 + √2) (√3 – √2)                                                                                    

 = 3√3 – 3√2

(√3)2 – (√2)2 

=         3√3 – 3√2

               3 – 1

=     3√3 – 3√2

             1

= 3(√3 -√2)

EQUALITY OF SURDS

Given two surds i.e  P + √m   and q + √n     if P +√m = q + √n    then

√P – q   = √n –  m   the L.H.S

The equation is a rational number while the L.H.S and R.H.S can only be equal if they are both equal to zero (0)

P – q = 0

:. P = q and n – m = 0 i.e.

√n  = √m

Examples: 

 Find the square root of the following?

  1. a) 7 + 2√10 b)  14 – 4√6

Solution

(a) Let the square root of 7 + 2 √10 be √m + √n

(√m + √n)2 = 7  + 2√10 

m +√2mn+ n = 7 + 2√10

 m + n   = 7                                 (1)

2√mn   = 2√10

    mn   =   10

Squaring both surds we have

mn =  10  _______(ii)

m + n = 7 ______ (i)

m n = 10   _______ (ii)

From equation (1)    m = 7 – n

Put m in (ii)   we have

(7 – n) n = 10

7n – n2 = 10

In sum; n2 – 7n + 10 = 0

             n2 – 2n – 5n + 10 =0

  n (n – 2) – 5 (n – 2) = 0

(n -5) (n – 2) = 0

n = 5 or 2

            m = 7 – 2, where n = 2

m = 5,

            m = 7 – 5, when n = 5 

m = 2

m= 5 or 2 

The square root of 7 + √10 is 5 & + 2.

(b) Let the square root of 14 – 4√6   be √P – √Q

           The (√P – √Q) 2  =14 – 4√6

P – 2√PQ + Q = 14 – 4 √6

            P + Q =   14 …………………… (1)

 

          -2√PQ      =  – 4√6

              -2               – 2

          √PQ =   2√6      (squaring both sides)

 

           PQ = (2√6)^2

           PQ = 4 x 6 ……………………………….. (11)

 

           P + Q = 14 ………………………………… (1)

 

           PQ = 24 ……………………………………… (11)

          From equation……………… (1)   P = 14 – Q

          Sub for p in equation ………………… (11)

          (14 – Q) Q = 24

           14Q – Q^2 = 24

          In turn, we have:

          Q^2 – 14Q + 24 = 0

          Q^2 – 12Q – 2Q + 24 = 0

          Q (Q -12) – 2 (Q – 12) = 0

          Q = 2 or 12

         If  P = 14 – Q, when Q= 12

         P = 14 – 12

         P = 2

         If P = 14 – Q when Q = 2 

         P = 14 – 2

             = 12

(√12  –   √2 ) = (2 √ 3 – √2) and   

(√2   – √12) =  (√2 – 2 √3)

ASSIGNMENT

  1. Expand (3√2 – 1) (3√2 + 1)                      (a) 16         (b) 20      (c) 17           (d) 24
  1. Simplify √200 in its basic form                (a) 10√2     (b) 5√4    (c) 2√10       (d) 2√50
  1. Simplify 9/√3                                            (a) 3√2       (b) 3√3    (c) 1/3   (d) 2√2
  1. Express 3√5 as a single surd                     (a) √40.  (b) √55    (c) √45    (d) √35
  1. Simplify √`128 – 4√8                                 (a) 0    (b) 1        (c) 2    (d) 3
  1. Express  3√2 – √3

                    2√3 – √2 in the form √m/√n where m and n are whole numbers.                     

7. Express.  1

          √5 +√3 in the form p√5 + q√3, where p and q are rational numbers.

Lesson Notes for Other Classes