Logarithm SS1 Mathematics Lesson Note
Download Lesson NoteTopic: Logarithm
LOGARITHMS OF NUMBERS TO BASE 10
In general, the logarithm of a number is the power to which the base must be raised to give that number. i.e if y=nx, then x = logny. Thus, logarithms of a number to base ten are the power to which 10 is raised to give that number i.e. if y =10x, then x =log10y. With this definition log101000 = 3 since 103= 1000 and log10100 = 2 since 102=100.
Examples:
- Express the following in logarithmic form
- a) 2-6 = 1/64Â Â Â b) 35 =243 Â Â c) 53 = 125 Â Â d) 104 = 10,000Â
 Solutions
(a) 2-6 = 1
               64
=log2 (1/64) = -6
Â
(b)35 = 243
 = log3243 =5
Â
(c)53 =125
        = log5125 = 3
Â
(d) 104 = 10,000
         = log1010000 = 4
- Express the following in index form
- a) Log2(1/8) = -3Â Â Â (b)Â Log10(1/100) = -2Â Â Â (c) Log464 = 3Â Â Â (d)Â Log5625 = 4Â Â Â Â
(e) Log101000 = 3
Â
Solutions
- a) Log2 (1/8)= -3
Then 2-3 = 1/8
- b) Log10(1/100) = -2
Then 10-2 = 1/100
- c) Log464 = 3
Then 43 = 64
- d) Log5625 = 4
Then 54 = 625
- e) Log101000 = 3
Then 103 = 1000
Note: Logarithms of numbers to base ten are found with the help of tables
Examples:
- Use the tables to find the log of:
37 Â Â (b) 3900 to base ten
Solutions
- a) 37 = 3.7 X 10
=3.7 X 101(standard form)
=100.5682 + 1 X101 (from table)
=101.5682
Hence log1037 = 1.5682
- b) 3900 = 3.9 X1000
=3.9 X 103 (standard form)
=100.5911 X 103 (from table)
=100.5911 + 3
=103.5911
Therefore log103900 = 3.5911
In logarithms any numbers there are two parts, an integer (whole number) before the decimal point and a fraction after the decimal point which is also called the mantissa. E.g
Log103900 = 3.5991
The integer part of log103900 is 3 and the decimal part is .5911
To obtain the integer part of the logarithm of a number to base ten, count the number of digits to the left-hand side of the decimal point and subtract 1. The decimal fraction part of the logarithm of the given number is obtained from the tables.
 Examples:
Use the logarithm table to find the logarithms to base ten of:
- 51.38   2. 840.3   3. 65160
Â
Solutions
- Log1051.38 = 1.7108
- Log10840.3 = 2.9244
- Log1065160 = 4.8140
ANTILOGARITHMS TABLE
Antilogarithm is the opposite of logarithms. To find a number whose logarithm is given. It is possible to use the logarithm table in reverse. However, it’s convenient to use the tables of antilogarithms. When finding an antilogarithm, look up the fractional part only, then use the integer to place the decimal point correctly in the final number
Example:
Find the antilog of the following logarithms:
- 0.5682
- 2.7547
- 5.3914
Solutions
 Log      antilog
- 5682Â Â Â Â Â 3.700
- 2.7547 Â Â Â 568.4
- 5.3914 Â Â Â 246200
Logarithms of numbers less than 1
 No          Log      Antilog
- 8320Â Â Â Â Â Â Â 3.9201Â Â Â Â Â Â 8320
- 58.24 Â Â Â Â Â Â 1.7652Â Â Â Â Â Â 58.24
CLASSWORKÂ
- Find the log of (i) 0.009321 (ii) 0.5454
- Find the antilog of: (iii) 3.3210 (iv) 1.8113 (v) 0.5813 (vi) 3.2212
MULTIPLICATION AND DIVISION OF NUMBERS USING LOGARITHMS TABLES
- Evaluate the following using tables
- a) 4627 X 29.3
- b) 819.8 ÷ 3.905
- c) 48.63 X 8.53
- d) 15.39 X 3.52
Solutions
- a) 4627 X 29.3
 No    Log
4627Â Â 3.6653
29.3Â Â 1.4669
135600Â Â 5.1322
4627 X 29.3 = 135600 (4 s.f)
Â
- b) 819.8 ÷ 3.905
No    Log
819.8Â Â 2.9137
3.905Â Â 0.5916
209.9Â Â 2.3221
Therefore 819.8 ÷ 3.905 = 209.9
       48.63 X 8.53
- c)Â Â 15.39 X 3.52
No    log
48.63Â Â Â Â 1.6869
8.53Â Â Â Â 0.9309
Numerator 2.6178Â Â Â Â 2.6178
- d)Â Â Â Â 15.39Â Â Â Â 1.1872
        3.52    0.5465
Denominator1.7337Â Â 1.7337
        7.658    0.8841
Therefore 48.63 X 8.53 = 7.658
                   15.39 X 3.52
Â
CLASSWORK
Use logarithms tables to calculate
1) 36.12 X 750.9   (2)  3577 x 31.11    (3) 256.5 ÷  6.45  (4) 113.2 X 9.98
ASSIGNMENT
- Find the log of 802 to base 10 (use log tables)Â
(a) 2.9042 (b) 3.9040 (c) 8.020 (d)1.9042Â
- Find the number whose logarithm is 2.8321 (a) 6719.2 (b) 679.4 (c) 0.4620 (d) 67.92
- What is the integer of the log of 0.000352 (a) 4 (b) 3 (c) 4 (d)3Â
- Given that log2(1/64) = m, what is m ? (a) -5 (b) -4 (c) -6 (d) 3
- Express the log in index form:Â log1010000 =4 (a) 103 = 10000 (b) 10-4 = 10000 (c) 104 = 10000 (d) 105 =100000
- Evaluate using logarithm table 6.28 X 304 and express your answer in the form A X 10n, where A is a number between 1 and 10 and n is an integer.
- Use the logarithm table to calculate 6354 X 6.243 correctly to 3 s.f