Indices SS1 Mathematics Lesson Note
Download Lesson NoteTopic: Indices
- LAWS OF INDICES
- Xa x Xb = Xa+b
- Xa ÷ Xb = Xa-b
- X0 = 1
- X-a= 1
Examples:
Simplify
- 105 X 104 2. a3 X a4
- m8 ÷ m5 4. 24×6 ÷ 8×4 5. 198 ÷ 198
Solutions
- 105 X 104 = 105+4 =109
- a3 X a4 = a3+4 =a7
- m8 ÷m5 = m8-5 = m3
- 24×6 ÷ 8×4 = 24×6 = 3×6-4 =3×2
- 198 ÷ 198 = 198-8 = 190 =1
CLASSWORK
Simplify
- 6 x Z0
- 4-3
- Z3 x (⅙)1
- r x r x r x r-5
- PRODUCT OF INDICES
(Xa)b = Xaxb = Xab
Examples
Simplify:
- (X2)3 2. (Y4)2 3. (3-2)-3 4. (-3d3)2 5. a6(-a)-4
Solutions
- (X2)3 = X2X3 = X6
- (Y4)2 = Y4X2 = Y8
- (3-2)-3 = 3-2 X -3=3+6
=36 =3 X 3 X 3 X 3 X 3 X3
=27 X 27
= 729
- (-3d3)2 = (-3)2 X (d3)2
= -3 X -3d6 = 9d6
- a6(-a)-4 = a6 X 1
(-a)4
= a6
(-a) X(-a) X (-a) X(-a)
= a6
a4
= a6 – 4
= a2
CLASSWORK
Simplify
- (h4)-5 2. (-4u2v)3 3. (-x3)2÷ x4 4. – (d2) ÷ d4 x –d 5. (-c)2 X (c)4 ÷ (-c3)
FRACTIONAL INDICES
X (1/a) and X (a/b)
X is short for the square root of x
√X X √ X = X
Let √x = xp
Then
Xp X xp =√ x X √ x= x1
By equating the indices
2p = 1 , P =½
Thus √x – x(½) = 3 x
Similarly, 3 x is short for the cube root of x e.g3 8= 2. Since 2 X 2 X 2 =8
And 3√-27 = -3
Since (-3 ) X (-3) X (-3 ) = -27
3√x X 3√x X 3√x = x
i.exq X xq X xq = x1
x3q = 1
Equating the power
3q=1
q= ⅓
thus3√x = x⅓
In general x1/a =a√x
Also x2/3 = x2 X 1/3= (x2)1/3
=3√x2
OR
X2/3 = (x2 x 1/3)= (x1/3)2
= (3√x)2
In general
Xa/b = b√xaor (b√x)a
Examples
Simplify
- 8 – ⅔ = 1 2. 4⅙ X 4⅓ 3. (16/81) – ¾. 4.√72a3b – (2/2b5b) – 6
Solutions:
- 8 – ⅔ = 1
= (3√8)2 = 1
= (2)2 = 4
- 4⅙ X 4⅓ = 4⅙÷ ⅓
= 4 (3/6) = 4 (½)
=√4 = 2
- (16/81) – ¾ = 1
= ( 4√16/81)3 = 1
= (2/3)3
= 1 ÷ (2/3)3
=1 ÷ (8/27) = 1 X (27/8) = 27/8
- 72a2b-2 = (72a3b-2)1/2
2b5b-6 2a5b-6
= 72 X a3 Xa-5 X b2 X b-6
2
= √36a3-5 X b-2-(-6)
= √36a-2 X b-2+6
= √36a-2 X b4
= √36 X (a-2 X b4)1/2
=6 X a-2 X1/2 X b4x1/2
=6a-1 X b2 =6 X 1X b2
a
=6b2a
CLASSWORK
Simplify:
- (125)-1/3 2. (18/32)-3/2 3.(3√4)1.5 4.64-5/6 5. √1 9/16
SOLVING EQUATION WITH INDICES
Eg: Solve the following equations:
- 2r-3 = -16
- 5x = 40x – ½
Solutions
- 2r-3 = -16
Divide both sides by 2
2r-3 = -16
2 2
r-3 = -8
1 = -8
r3 1
-8r3 = 1 X 1
r3 = – 1
8
Take the cube root of both sides
3√r3 = 3 – 1
-8
r = -1
2
- 5x = 40x -½
5 5
x= 8x-1/2
x= 8 x 1
x1/2
Cross multiply
xX x1/2 =8
x1 X x1/2 =8
x1+1/2 =8
x3/2 =8
i.e (√x)3= 8
raise both sides by power 2/3
(x3/2) X 2/3 = (8)2/3
X1= (3√8)2
X= (2)2
X= 4
4c-1 =64
Change both sides to the same base
4c-1 = 43
Equate the powers
c-1 = 3
c = 3 + 1
c = 4
CLASSWORK
Solve the following equation
- a⅔= 9 2. 2x(3)= 54
ASSIGNMENT
Simplify the following:
- 33 X 6-3 X 25 (a) 0 (b) 1 (c) 2 (d)4 (e) 12
- Calculate the value of (27/125)⅓ X (4/9) (½)
(a)12/25 (b) 2/5 (c) 3/5 (d) 9/10 (e) 10/9
- If 5p-3 = 8 X 5-2, find the value of p (a) 8/125 (b) 2/5 (c) 4/5 (d) 8/5 (e) 5/2
- If x2 = 811½, x = ———- (a) 3 (b) 9 (c)18 (d)27 (e) 54
- Simplify (x1⅓)3 x 1 (a)1 (b) x1 (c) x3 (d) x0 (e)2
x4
- Evaluate 9½ X 27⅔
- Solve the following equations
- Y-2 = 9 (b) (2s)½ = 9 (c) 2n-1 = 16