Number System JSS1 Mathematics Lesson Note
Download Lesson NoteTopic: Number System
Converting Number Bases From One Base to Another Base
This is a 2-stage conversion process. The steps to do this are simple. First, convert the given base to base ten and then convert the result to the required base.
Example: Convert 21356 to a number in base two
Solution:Â
Step one: Converting to base tenÂ
23123150 = (2X63) + (1×62) + (3×61) + (5×60)
= (2x 216) + (1x 36) + (3x 6) + (5 x 1)
= 432 + 36 + 18 + 5 = 491
Step two: Convert the answer in base ten to a number in base two
2 491
2 245 R 1
2 122 R 1
2 61 R 0
2 30 R 1
2 15 R 0
2 7 R 1
2 3 R 1
2 1 R 1
0 R 1
Therefore 21356 = 1111010112
Example 2: Express 101112 to a number in base three
Solution:
- 1403121110= (1 X 24) + (0 X 23) + (1 X 22) + (1 X 21) + (1 X 20)Â
= 1 X 16 + 0 X 8 + 1 X 4 + 1 X 2 + 1 X 1Â Â
= 16 + 0 + 4 + 2 + 1
  = 2310
3 23
3 7 R 2
3 2 R 1
0 R 2
Therefore 101112 = 2123
Addition and Subtraction of Number Base
Note the following STEPS in adding and subtracting.
To add in base twoÂ
0+0 = 0
1+ 0 = 1
1 + 1 = 10
1 + 1+ 1 = 11
To subtract in base two
0 – 0 =0
1 – 0 = 1
10 – 1 = 1Â
11 – 1 = 10
Example 5.3: Add the followingÂ
- 11012 and 11112
- 110112, 101012, and 10012
Solution:
- 1101 + 1111 = Â 1 1 0 1Â [using the addition steps 1 + 1 = 10, write 0 down and move the 1 to the next number]
+ Â 1 1 1 1Â [also take the 1 to next, and move them till you get to the last one].
1 1 1 0 02
- 11011 + 10101 + 1001 = 1 1 0 1 12
1 0 1 0 12
+Â Â 1 0 0 12
1 1 1 0 0 12
Example : Subtract (a) 10112 from 101012 (b) 110112 from 1110102Â
Solution:
- 1 0 1 0 1 [using the subtraction  steps 1- 1 = 0, write 0 down and move to the next number]
-1 0 1 12
1 0 1 02
- 1 1 1 0 1 02
-1 1 0 1 12
1 1 1 1 12
5.3 Multiplication of Binary
Example 5.5: Find the product of 10112 and 1012
Solution:
1 0 1 12
x 1 0 12
1 0 1 1
     0 0 0 0
      1 0 1 1
                  1 1 0 1 1 12
Example 5.6: multiply 1111 by 110
Solution:Â
1 1 1 12
 1 1 02
0 0 0 0
     1 1 1 1
    1 1 1 1      Â
                   1 0 1 1 0 1 02
EVALUATION:Â
DO THESE
- Add the following: (a) 10012 + 11112
    (b) 1011102+100102
- Subtract 10112 from 11011012
- Multiply 1101012 by 10112
-   Find the value of the following binary numbers 1011¬+10-111